Human NQO1 as a Selective Target for Anticancer Therapeutics and Tumor Imaging
Human NQO1 as a Selective Target for Anticancer Therapeutics and Tumor Imaging
Blog Article
Human NAD(P)H-quinone oxidoreductase1 SHOPPING CENTERS: UMA RELAÇÃO ENTRE OS ATRIBUTOS DE ESCOLHA PELOS CONSUMIDORES VERSUS OS ATRIBUTOS VALORIZADOS PELOS GERENTES (HNQO1) is a two-electron reductase antioxidant enzyme whose expression is driven by the NRF2 transcription factor highly active in the prooxidant milieu found in human malignancies.The resulting abundance of NQO1 expression (up to 200-fold) in cancers and a barely detectable expression in body tissues makes it a selective marker of neoplasms.NQO1 can catalyze the repeated futile redox cycling of certain natural and synthetic quinones to their hydroxyquinones, consuming NADPH and generating rapid bursts of cytotoxic reactive oxygen species (ROS) and H2O2.
A greater level of this quinone bioactivation due to elevated NQO1 content has been recognized as a tumor-specific therapeutic strategy, which, however, has not been clinically exploited.We review here the natural and new quinones activated by NQO1, the catalytic inhibitors, and the ensuing cell death mechanisms.Further, the cancer-selective expression of NQO1 has opened excellent opportunities for distinguishing cancer cells/tissues from their normal counterparts.
Given this diagnostic, prognostic, and therapeutic importance, we and others have engineered a large number of specific NQO1 turn-on small molecule probes that remain latent but release intense fluorescence Gender-based violence in the Spanish cinema groups at near-infrared and other wavelengths, following enzymatic cleavage in cancer cells and tumor masses.This sensitive visualization/quantitation and powerful imaging technology based on NQO1 expression offers promise for guided cancer surgery, and the reagents suggest a theranostic potential for NQO1-targeted chemotherapy.